3.1097 \(\int \frac{1}{(c+a^2 c x^2)^{3/2} \tan ^{-1}(a x)^{5/2}} \, dx\)

Optimal. Leaf size=126 \[ -\frac{4 \sqrt{2 \pi } \sqrt{a^2 x^2+1} \text{FresnelC}\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{3 a c \sqrt{a^2 c x^2+c}}+\frac{4 x}{3 c \sqrt{a^2 c x^2+c} \sqrt{\tan ^{-1}(a x)}}-\frac{2}{3 a c \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)^{3/2}} \]

[Out]

-2/(3*a*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^(3/2)) + (4*x)/(3*c*Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]]) - (4*Sqrt
[2*Pi]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(3*a*c*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.228462, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4902, 4942, 4905, 4904, 3304, 3352} \[ -\frac{4 \sqrt{2 \pi } \sqrt{a^2 x^2+1} \text{FresnelC}\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{3 a c \sqrt{a^2 c x^2+c}}+\frac{4 x}{3 c \sqrt{a^2 c x^2+c} \sqrt{\tan ^{-1}(a x)}}-\frac{2}{3 a c \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(5/2)),x]

[Out]

-2/(3*a*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^(3/2)) + (4*x)/(3*c*Sqrt[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]]) - (4*Sqrt
[2*Pi]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(3*a*c*Sqrt[c + a^2*c*x^2])

Rule 4902

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1)
*(a + b*ArcTan[c*x])^(p + 1))/(b*c*d*(p + 1)), x] - Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a + b
*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]

Rule 4942

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[
((f*x)^m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^(p + 1))/(b*c*d*(p + 1)), x] - Dist[(f*m)/(b*c*(p + 1)), Int[
(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e
, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1]

Rule 4905

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q + 1/2)*Sqrt[1
 + c^2*x^2])/Sqrt[d + e*x^2], Int[(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x
] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rule 4904

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c, Subst[Int[(a
 + b*x)^p/Cos[x]^(2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILtQ
[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{1}{\left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{5/2}} \, dx &=-\frac{2}{3 a c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}}-\frac{1}{3} (2 a) \int \frac{x}{\left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^{3/2}} \, dx\\ &=-\frac{2}{3 a c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}}+\frac{4 x}{3 c \sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}}-\frac{4}{3} \int \frac{1}{\left (c+a^2 c x^2\right )^{3/2} \sqrt{\tan ^{-1}(a x)}} \, dx\\ &=-\frac{2}{3 a c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}}+\frac{4 x}{3 c \sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}}-\frac{\left (4 \sqrt{1+a^2 x^2}\right ) \int \frac{1}{\left (1+a^2 x^2\right )^{3/2} \sqrt{\tan ^{-1}(a x)}} \, dx}{3 c \sqrt{c+a^2 c x^2}}\\ &=-\frac{2}{3 a c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}}+\frac{4 x}{3 c \sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}}-\frac{\left (4 \sqrt{1+a^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\cos (x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{3 a c \sqrt{c+a^2 c x^2}}\\ &=-\frac{2}{3 a c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}}+\frac{4 x}{3 c \sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}}-\frac{\left (8 \sqrt{1+a^2 x^2}\right ) \operatorname{Subst}\left (\int \cos \left (x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{3 a c \sqrt{c+a^2 c x^2}}\\ &=-\frac{2}{3 a c \sqrt{c+a^2 c x^2} \tan ^{-1}(a x)^{3/2}}+\frac{4 x}{3 c \sqrt{c+a^2 c x^2} \sqrt{\tan ^{-1}(a x)}}-\frac{4 \sqrt{2 \pi } \sqrt{1+a^2 x^2} C\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{3 a c \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.144226, size = 120, normalized size = 0.95 \[ \frac{-2 \sqrt{a^2 x^2+1} \left (-i \tan ^{-1}(a x)\right )^{3/2} \text{Gamma}\left (\frac{1}{2},-i \tan ^{-1}(a x)\right )-2 \sqrt{a^2 x^2+1} \left (i \tan ^{-1}(a x)\right )^{3/2} \text{Gamma}\left (\frac{1}{2},i \tan ^{-1}(a x)\right )+4 a x \tan ^{-1}(a x)-2}{3 a c \sqrt{a^2 c x^2+c} \tan ^{-1}(a x)^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^(5/2)),x]

[Out]

(-2 + 4*a*x*ArcTan[a*x] - 2*Sqrt[1 + a^2*x^2]*((-I)*ArcTan[a*x])^(3/2)*Gamma[1/2, (-I)*ArcTan[a*x]] - 2*Sqrt[1
 + a^2*x^2]*(I*ArcTan[a*x])^(3/2)*Gamma[1/2, I*ArcTan[a*x]])/(3*a*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x]^(3/2))

________________________________________________________________________________________

Maple [F]  time = 0.82, size = 0, normalized size = 0. \begin{align*} \int{ \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{3}{2}}} \left ( \arctan \left ( ax \right ) \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(5/2),x)

[Out]

int(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**2*c*x**2+c)**(3/2)/atan(a*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a^{2} c x^{2} + c\right )}^{\frac{3}{2}} \arctan \left (a x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^(5/2),x, algorithm="giac")

[Out]

integrate(1/((a^2*c*x^2 + c)^(3/2)*arctan(a*x)^(5/2)), x)